
0 · w
U. S. DEPARTMENT OF COMMERCE

ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION
WEATHER BUREAU

NATIONAL METEOROLOGICAL CENTER

November 1969

LATTICE STRUCTURE AND COMPUTATIONAL
MODE: -ADVECTION: EQUATIONS

OFFICE NOTE NO. 31

Joseph P. Gerrity, Jr.
Development Division

National Meteorological Center
USWB - ESSA



* .0.
Lattice Structure and Computational

Mode: Advection Equations
by

Joseph P. Gerrity, Jr.

The term "computational mode: was introduced by Platzman (1954) to
identify a physically irrelevant eigen-frequency of the centered difference
approximation of the advection equation

at -- u x (1)

Subsequently, Matsuno (1966) demonstrated that the semi-discrete approx-
imation of (1) in which the space derivative alone is replaced by a centered
finite-difference approximation, permitted the appearance of a "spatial
computational mode." This was a physically irrelevant, additional eigen-
wave number. The term "computational mode" is therefore ambiguous.

In an attempt to clarify this notion, we shall follow-up a point made by
Platzman (1958) regarding the structure of the centered difference
approximation to equation (1). Using the symbol ,n, to identify the value
of , at a grid-point for which t = nAt and x = jAx, one may write for (1), the
second order approximation:

,n+l n-1 n - n
j j = -U j+1

At Ax (2)

In order to make clear the "lattice structure" of equation (2) it is
convenient to develop from it the following form,

n+2 -2 _2 n uz n + n n
J j j+z j3-2 3

(At)2 (Ax)2 (3)

By inspection of the indices appearing in equation (3), one notes that they
are all in one of the four classes:

Class 1: n, odd; j, odd
Class 2: n, even; j, odd
Class 3: n, odd; j, even
Class 4: n even; j, even (4)
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One may visualize the grid-point mesh to be composed of four sub-meshes
or lattices. On each one of these lattices, equation (3) applies quite
independently of the other three lattices.

As pointed out by Platzman the equation (3) is an approximation to the wave
equation and admits solutions in the form of wave functions,

n,n = A ei (rjAx - qnAt)~j = A ~~~~~~~~~~~~~~~~~(5)

It is very significant to note that in (5) the wave number, r, and frequency,
q, have cut-offs at the wavelength corresponding to 4Ax and the period
corresponding to 4At. More precisely r and q are confined to the intervals,

0< rAx .

0< qt< (6) 
2 . ~~~~~~~~~~~~~~(6)

This follows from the structure of the grid lattice corresponding to each of
the four classes in (4). Consequently, the frequency equation obtained when
(5) is substituted into (3)

sin qAt = (UAt) sin rAx (7)
/Ax '(7)

possess only single valued functions of r and q over the allowable range (6).

This behavior may be contrasted with that resulting from the substitution
of the wave function (5) into the equation (2). Since the solution to (2) is
defined for all grid points, not just a particular lattice, the restriction (6)
on r and q is not appropriate. Rather one may allow them to lie in the
ranges,

0 < rAxi < <r

0 < lqAt < T (8)

This implies that the smallest wavelength resolvable is ZAx, and the
smallest period is ZAt. The frequency equation relating r and q is

sin qAt = + UA t sin rAx (9)
X-~ (9)

One immediately notices that the sine function has a double valued structure
over the intervals prescribed in (8). It is this multiple-value property
which gives rise to the "computational mode" form used by Platzman and
Matsuno.
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The Computational Mode Representation of the Velocity

If one considers the system of linear equations governing a one-dimensional
linear gravitational oscillation,

au ah
at = - g

ah au
iat - - EH :- (10)

and uses the centered finite difference approximation,

un+lI n-i Atnu*n+l _ u n -1 = _ g At (hn hn )
J J Ax j+1 j-1

h+l _ hnl = H A n un) 
3 3 Ex (j+l j-l (11)

one may determine two necessary conditions for the existence of solutions
of the form:

un A ei (qnAt + rjAx)j

hn = B ei (qnAt + rjAx) (12)
h3 (I12)

The first of these conditions is the linear stability criterion

g H(At) z < (Ax)2 (13)

The second, is the frequency equation

sin qAt = ± (gH)1' 2 At (sin rAx)/Ax (1) D

which must be satisfied by allowable values of q and r. Since the solutions
(12) are to apply to the entire grid, the frequency and wave number must
lie in the intervals (8). However, if we choose q and r both positive in the
interval (6), the modes allowed by (14) may be tabulated as in Table 1. We
have assumed that e and e satisfy

sin q At = + (gH) l/Z At sinr AxsAx ()sinr Ax
Ax (15)
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TABLE 1 -- The values of frequency q and wave number r
which satisfy equation (14) expressed in terms of 'r and q
defined in (15).

Using these allowable free modes-the velocity, uJ, may be expressed,
n= + e +U+iAx +A

un = FV+Ul ein + U2 eiTJ + U eiWT(j+n)] i(rjAx ± qnAt)
(16)

The coefficient of the exponential wave function may be regarded as a
scheme for superimposing the four solutions existing on each lattice
defined in (4). Suppose, for example, that on lattice 1

=A A A

-A ei(rjAx - qnAt) (
j = A 1

then from (16) and (4) one has

A =[ V - U1 - U2 + U3] (18)

Finally, note that the wave number and frequency in (16) are relatively low.
Therefore the exponential wave function is slowly variable in space-time.
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q r q r

A A ~~~~~~~~~~7AA
_q r + q r

A A A A

A A A A

~ .q Ir T -q r
At 

A A A A

-q -r ~ + -r

At+

A A A Aq~~ V-r TT +q T- r
Ax Ax

~~~~A A A A

q n +r -q T + r
~At Ax

A A AAq TT-r r -q T- r

-q ~ +r TT +q w +r
Ax Zt =

0
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